Prob. 1

Solve the following set of simultaneous linear equations by the matrix inverse method.
(a) $2 x+3 y-z=-10$,
$-x+4 y+2 z=-4$, $2 x-2 y+5 z=35$
(b) $10 x+3 y+10 z=5$,
$8 x-2 y+9 z=2$,
$8 x+y-10 z=35$

Prob. 2

Solve the following of simultaneous equations using Gauss elimination method
(a) $2 x+y-3 z=11$,
$4 x-2 y+3 z=8$,
$-2 x+2 y-z=-6$
(b) $6 x+3 y+6 z=30$,
$2 x+3 y+3 z=17$,
$x+2 y+2 z=11$
(c) $2 x 1+x 2+x 3=4$,
$3 x 2-3 x 3=0$,
$-x 2+2 x 3=1$
(d) $x 1+2 x 2+3 x 3+4 x 4=8$,
$2 x 1-2 x 2-x 3-x 4=-3$,
$x 1-3 x 2+4 x 3-4 x 4=8$,
$2 x 1+2 \times 2-3 \times 3+4 x 4=-2$
Prob. 3
Solve the following of simultaneous equations using Gauss Jordan method
(a) $4 x-3 y+5 z=34$,
$2 x-y-z=6$,
$x+y+4 z=15$
(b) $2 x-y+z=-1$,
$3 x+3 y+9 z=0$,
$3 x+3 y+5 z=4$
(c) $x+y-z=1$.
$x+2 y-2 z=0$,
$-2 x+y+z=1$
(d) $x-y=2$,
$-2 x+2 y-z=-1$,
$y-2 z=6$
(e) $x+y+z=3$,
$2 x+3 y+z=6$,
$x-y-z=-3$
Prob. 4
Solve the following set of simultaneous linear equations using the Crout's method.
(a) $3 x+2 y+7 z=4$,
$2 x+3 y+z=5$,
$3 x-4 y+z=7$
(b) $x+y+z=9$,
$2 x-3 y+4 z=13$,
$3 x+y+5 z=40$
(c) $2 x+y-z=6$,
$x-3 y+5 z=11$,
$-x+5 y+4 z=13$
Prob. 5
Solve the following of simultaneous equations using Jacobi method
(a) $2 x-y+5 z=15$,
$2 x+y+z=7$,
$x+3 y+z=10$
(b) $20 x+y-2 z=17$,
$3 x+20 y-z=-18$,
$2 x-3 y+20 z=25$
(c) $5 x+2 y+z=12$,
$x+4 y+2 z=15$,
$x+2 y+5 z=20$
Prob. 6
Solve the following of simultaneous equations using Gauss-Seidal method and Relaxation method
(a) $4 x-3 y+5 z=34$,
$2 x-y-z=6$,
$z+y+4 z=15$
(b) $2 x-y+5 z=15$,
$2 x+y+z=7$,
$x+3 y+z=10$
(c) $15 x+3 y-2 z=85$,
$2 x+10 y+z=51$,
$x-2 y+8 z=5$
(d) $10 x 1-2 x 2-x 3-x 4=3$,
$-2 x 1+10 x 2-x 3-x 4=15$,
$-x 1-x 2+10 x 3-2 x 4=27$,
$-x 1-x 2-2 x 3+10 x 4=-9$

The electrical network shown can be viewed as consisting of three loops. Applying Kirhoff's law (\sum voltage drops $=\sum$ voltage sources) to each loop yields the following equations for the loop currents i_{1}, i_{2}, and i_{3} :
Compute the three loop currents for $R=5,10$, and 20Ω.
Dr. Sherif Adham Mohamed
Nov. 07.2017

