Numerical Analysis Numerical Solution of Linear System of Equations Sheet # 5

Prob.1

Solve the following set of simultaneous linear equations by the matrix inverse method.

(a)
$$2x + 3y - z = -10$$
,
 $-x + 4y + 2z = -4$,
 $2x - 2y + 5z = 35$
(b) $10x + 3y + 10z = 5$,
 $8x - 2y + 9z = 2$,
 $8x + y - 10z = 35$

Prob.2

Solve the following of simultaneous equations using Gauss elimination method

(a)
$$2x + y - 3z = 11$$
,
 $4x - 2y + 3z = 8$,
 $-2x + 2y - z = -6$
(b) $6x + 3y + 6z = 30$,
 $2x + 3y + 3z = 17$,
 $x + 2y + 2z = 11$
(c) $2x1 + x2 + x3 = 4$,
 $3x2 - 3x3 = 0$,
 $-x2 + 2x3 = 1$
(d) $x1 + 2x2 + 3x3 + 4x4 = 8$,
 $2x1 - 2x2 - x3 - x4 = -3$,
 $x1 - 3x2 + 4x3 - 4x4 = 8$,
 $2x1 + 2x2 - 3x3 + 4x4 = -2$

Prob. 3

Solve the following of simultaneous equations using Gauss Jordan method

(a)
$$4x - 3y + 5z = 34$$
,
 $2x - y - z = 6$,
 $x + y + 4z = 15$
(b) $2x - y + z = -1$,
 $3x + 3y + 9z = 0$,
 $3x + 3y + 5z = 4$
(c) $x + y - z = 1$.
 $x + 2y - 2z = 0$,
 $-2x + y + z = 1$
(d) $x - y = 2$,
 $-2x + 2y - z = -1$,
 $y - 2z = 6$
(e) $x + y + z = 3$,
 $2x + 3y + z = 6$,
 $x - y - z = -3$

Prob. 4

Solve the following set of simultaneous linear equations using the Crout's method.

(a) 3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x - 4y + z = 7 **Numerical Analysis Numerical Solution of Linear System of Equations** Sheet # 5

(*b*) x + y + z = 9, 2x - 3y + 4z = 13, 3x + y + 5z = 40(c) 2x + y - z = 6, x - 3y + 5z = 11, -x + 5y + 4z = 13Prob.5 (*a*) 2x - y + 5z = 15, 2x + y + z = 7,x + 3y + z = 10(b) 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25(c) 5x + 2y + z = 12, x + 4y + 2z = 15,

Solve the following of simultaneous equations using Jacobi method

x + 2y + 5z = 20

Prob.6

Solve the following of simultaneous equations using Gauss-Seidal method and **Relaxation method**

(a)
$$4x - 3y + 5z = 34$$
,
 $2x - y - z = 6$,
 $z + y + 4z = 15$
(b) $2x - y + 5z = 15$,
 $2x + y + z = 7$,
 $x + 3y + z = 10$
(c) $15x + 3y - 2z = 85$,
 $2x + 10y + z = 51$,
 $x - 2y + 8z = 5$
(d) $10x1 - 2x2 - x3 - x4 = 3$,
 $-2x1 + 10x2 - x3 - x4 = 15$,
 $-x1 - x2 + 10x3 - 2x4 = 27$,
 $-x1 - x2 - 2x3 + 10x4 = -9$
200
 50
 i_1
 i_2
 i_1
 $0 \vee 100$

The electrical network shown can be viewed as consisting of three loops. Applying Kirhoff's law (\sum voltage drops = \sum voltage sources) to each loop yields the following equations for the loop currents i_1 , i_2 , and i_3 :

Compute the three loop currents for R = 5, 10, and 20 Ω .

Dr. Sherif Adham Mohamed Nov. 07.2017